Abstract
To investigate normal-appearing white matter (NAWM) microstructure of glioma patients with biexponential diffusion analysis in order to reveal the nature of diffusion abnormalities and to assess whether they are region-specific or global. Twenty-four newly diagnosed glioma patients (grade II-IV) and 24 matched control subjects underwent diffusion-weighted imaging at 3T. Diffusion parameters were calculated using monoexponential and biexponential models. Apparent diffusion coefficient (ADC) values were measured in the entire NAWM of the hemisphere contralateral and ipsilateral to the tumor. In the contralateral NAWM, regional ADC values were assessed in the frontal, parietal, occipital, and temporal NAWM. ADCmono and ADCfast were significantly higher than control values in all investigated regions except the temporal NAWM (P < 0.04). ADCslow was significantly increased in the total contralateral, frontal, and parietal NAWM (P < 0.03), while pslow was decreased in both total hemispheric NAWM and the parietal NAWM of glioma patients compared to controls (P < 0.04). ADCmono , ADCfast , ADCslow , and pslow were significantly different among the NAWM of the four lobes of the contralateral hemisphere in both groups (P < 0.0001), and these regional differences were similar in patients and controls (P > 0.05). Hemispheric ADCmono and pslow differences were different between groups (P < 0.05). Globally altered diffusion parameters suggest the presence of global vasogenic edema in the NAWM of glioma patients, which is further supported by the finding that regional differences in patients follow those found in controls. Alternatively, some tumor infiltration might contribute to diffusion abnormalities in the NAWM, especially in the tumor-affected hemisphere. J. Magn. Reson. Imaging 2016;44:633-641.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.