Abstract

The excitation density dependence of photoluminescence (PL) blinking of single CdSe/ZnS quantum dots was studied by means of single-dot PL spectroscopy. As the excitation density increases, an intermediate state appears in addition to the highly emissive (ON) and nonemissive (OFF) states. The systematic study of the excitation density dependence of PL blinking behavior (PL intensity, probabilities of finding these states, time probability distributions, and PL spectra and lifetimes) suggests that the intermediate state can be attributed to a charged exciton (trion) state generated through biexciton generation and charging (ionization) of a quantum dot under a high-density excitation regime. Our results indicate that the biexciton generation is a precursor of the trion state and not of the OFF state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.