Abstract

A unique nanotemplate deposition technique is utilized in growth of semiconductor quantum dots which enables precise control over the dot dimensions and nucleation site. Here, we demonstrate tuning of the biexciton binding energy in a single, site-selected InAs/InP quantum dot through manipulation of the nanotemplate dimensions and thus, dot size. A monotonic decrease of the biexciton binding energy from the binding to anti-binding regime through zero is observed with increasing dot size. Piezoelectric fields in large quantum dots are suggested as the mechanism to obtain an unbound biexciton state. The tunability of the biexciton binding energy demonstrated here for a deterministically positioned quantum dot is an important step towards a scalable route in the generation of entangled photon pairs that emit around the telecommunications band of 1.55 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.