Abstract
Designing support structures for offshore wind turbines is a complex task as these are highly dynamic systems subjected to long-term cyclic loads with variable amplitude. Long-term cyclic loading may cause stiffening or softening of the soil around the pile foundation of an offshore wind turbine, which leads to variations in the foundation stiffness and accumulated permanent rotation of the pile. Although variations in the foundation stiffness can negatively impact the fatigue life, the long-term variability of the soil conditions is normally not considered in the fatigue damage assessment. The main objective of this study is the investigation of the impact of changes in soil parameters on the fatigue lifetime for an offshore wind turbine founded in loose sand. For this purpose, a generic monopile based offshore wind turbine with flexible foundation model was used. The soil-pile interaction was modeled with a distributed spring model using nonlinear API p-y curves. Integrated analyses in the time domain were performed and fatigue damage was assessed in terms of a damage equivalent bending moment at mudline. The fatigue lifetime varies between -9 percent and +4 percent when considering changes in soil conditions, depending on the assumption of soil softening or stiffening, respectively. These results indicate that changes in soil parameters should be taken into account in the fatigue damage calculations of offshore wind turbines for more precise fatigue lifetime estimation. Moreover, it is emphasized that more accurate modeling of soil-pile interaction is required in the design and optimization of offshore wind turbines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.