Abstract

Aromatic aldehydes are important aromatic compounds for the flavour and fragrance industry. In this study, a parallel cascade combining aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) and unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO) to convert aromatic primary alcohols into high-value aromatic aldehydes is proposed. Key influencing factors in the process of enzyme cascade catalysis, such as enzyme dosage, pH and temperature, were investigated. The universality of PeAAOx coupled with AaeUPO cascade catalysis for the synthesis of aromatic aldehyde flavour compounds from aromatic primary alcohols was evaluated. In a partially optimised system (comprising 30 μM PeAAOx, 2 μM AaeUPO at pH 7 and 40 °C) up to 84% conversion of 50 mM veratryl alcohol into veratryl aldehyde was achieved in a self-sufficient aerobic reaction. Promising turnover numbers of 2800 and 21,000 for PeAAOx and AaeUPO, respectively, point towards practical applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.