Abstract
The structural step problem for elastic-plastic internal-variable materials is addressed in the presence of frictionless unilateral contact conditions. Basing on the BIEM (boundary integral equation method) and making use of deformation-theory plasticity (through the backward-difference method of computational plasticity), two variational principles are shown to characterize the solution to the step problem: one is a stationarity principle having as unknowns all the problem variables, the other is a saddle-point principle having as unknowns the increments of the boundary tractions and displacements, along with the plastic strain increments in the domain. The discretization by boundary and interior elements transforms the above principles into well-posed mathematical programming formulations belonging to the symmetric Galerkin BEM formulations (with features such as a symmetric sign-definite coefficient matrix, double integrations, and hypersingular integrals).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.