Abstract

The problem of vanishing and exploding gradients has been a long-standing obstacle that hinders the effective training of neural networks. Despite various tricks and techniques that have been employed to alleviate the problem in practice, there still lacks satisfactory theories or provable solutions. In this paper, we address the problem from the perspective of high-dimensional probability theory. We provide a rigorous result that shows, under mild conditions, how the vanishing/exploding gradients problem disappears with high probability if the neural networks have sufficient width. Our main idea is to constrain both forward and backward signal propagation in a nonlinear neural network through a new class of activation functions, namely Gaussian–Poincaré normalized functions, and orthogonal weight matrices. Experiments on both synthetic and real-world data validate our theory and confirm its effectiveness on very deep neural networks when applied in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.