Abstract

AbstractHigh‐voltage all‐solid‐state lithium batteries (HVASSLBs) are considered attractive systems for portable electronics and electric vehicles, due to their theoretically high energy density and safety. However, realization of HVASSLBs with sulfide solid electrolytes (SEs) is hindered by their limited electrochemical stability, resulting in sluggish interphase dynamics. Here, a bidirectionally compatible buffering layer design scheme is proposed to overcome the interfacial challenges of sulfide‐based HVASSLBs. As a proof of concept, it is found that NASICON‐type LixZr2(PO4)3 surprisingly exhibit great compatibility with both 4.5 V LiCoO2 and Li6PS5Cl, based on the results of first‐principles calculations and various in situ/ex situ characterizations. This compatibility significantly restrains the interface reactivity and boosts interfacial Li‐ion transport. Therefore, 4.5 V sulfide‐based HVASSLBs can exhibit remarkably enhanced initial discharge capacity (143.3 vs 125.9 mAh·g−1 at 0.2C), capacity retention (95.53% vs 74.74% after 100 cycles), and rate performance (97 vs 45 mAh·g−1 at 2C). This work sheds light on the great prospects of sulfide‐based HVASSLBs with high‐rate characteristics, and constitutes a crucial step toward the rational design of interface and interphase chemistry for high‐performance sulfide‐based HVASSLBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.