Abstract

Bidirectional transformations provide a novel mechanism for synchronizing and maintaining the consistency of information between input and output. Despite many promising results on bidirectional transformations, these have been limited to the context of relational or XML (tree-like) databases. We challenge the problem of bidirectional transformations within the context of graphs, by proposing a formal definition of a well-behaved bidirectional semantics for UnCAL, i.e., a graph algebra for the known UnQL graph query language. The key to our successful formalization is full utilization of both the recursive and bulk semantics of structural recursion on graphs. We carefully refine the existing forward evaluation of structural recursion so that it can produce sufficient trace information for later backward evaluation. We use the trace information for backward evaluation to reflect in-place updates and deletions on the view to the source, and adopt the universal resolving algorithm for inverse computation and the narrowing technique to tackle the difficult problem with insertion. We prove our bidirectional evaluation is well-behaved. Our current implementation is available online and confirms the usefulness of our approach with nontrivial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.