Abstract
A bidirectional transient voltage suppression (TVS) diode consisting of specially designed p--n++-p-multi-junctions was developed using low temperature (LT) epitaxy and fabrication processes. Its electrostatic discharge (ESD) performance was investigated using IV, C-V, and various ESD tests including the human body model (HBM), machine model (MM) and IEC 61000-4-2 (IEC) analysis. The symmetrical structure with very sharp and uniform bidirectional multijunctions yields good symmetrical I-V behavior over a wide range of operating temperature of 300 K ? 450 K and low capacitance as 6.9 pF at 1 MHz. In addition, a very thin and heavily doped n++ layer enabled I-V curves steep rise after breakdown without snapback phenomenon, then resulted in small dynamic resistance as 0.2 ;, and leakage current completely suppressed down to pA. Manufactured bidirectional TVS diodes were capable of withstanding ± 4.0 kV of MM and ± 14 kV of IEC, and exceeding ± 8 kV of HBM, while maintaining reliable I-V characteristics. Such an excellent ESD performance of low capacitance and dynamic resistance is attributed to the abruptness and very unique profiles designed very precisely in p-n++p-multi-junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JSTS:Journal of Semiconductor Technology and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.