Abstract

In this contribution, we reformulated the bidirectional teleportation protocol suggested in Ref. 7, by means of Bloch vectors as well as the local operations are represented by using Pauli operators. Analytical and numerical calculations for the teleported state and Fisher information are introduced. It is shown that both quantities depend on the initial state settings of the teleported qubits and their triggers. The Fidelities and the Fisher information of the bidirectionally teleported states are maximized when the qubit and its trigger are polarized in the same direction. The minimum values are predicted if both initial qubits have different polarization or nonzero phase. The maximum values of the Fidelity and the quantum Fisher information are the same, but they are predicted at different polarization angles. We display that the multi-parameter form is much better than the single parameter form, where it satisfies the bounds of classical, entangled systems and the uncertainty principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.