Abstract

The subduction polarity of the South Tianshan Ocean (STO) is a matter of debate, primarily in that the Paleozoic structures of Tianshan orogenic belt have been strongly overprinted by the Cenozoic intra-continental deformation. Indentifying the arc-related magmatic rocks may provide a convincible clue for understanding the closure process of the STO. In this study, whole-rock geochemistry, zircon U-Pb dating and Hf isotope were presented on the andesite and monzonite from the Bayanbulak area of the southern Central Tianshan Block (CTB) and on the quartz diorite from the Ouxidaban area of the northern Tarim Craton. Geochemically, all the samples are Na-rich, enriched in light rare earth elements and large ion lithophile elements (Rb, Ba, U, K and Pb), and depleted in high strength field elements (Nb, Ta and Ti), like most arc-type igneous rocks. The Bayanbulak andesite samples display high MgO, Fe2O3T, TiO2 and Mg# values, and positive εHf(t) values, indicating magma source from the wedge mantle. But the existence of xenocrystic zircons implies that continental crust material were involved during magma ascend, suggesting a continental arc setting for the Bayanbulak andesite. The Bayanbulak monzonite and the Ouxidaban quartz diorite samples display relatively higher SiO2 contents, and lower MgO, Fe2O3T and TiO2 concentrations, indicating crustal sources. But the Mg# values of the Bayanbulak monzonite and the Ouxidaban quartz diorite are 48.76–51.85 and 50.31–53.73, and the εHf(t) values are −2.5 to 8.7 and −1.7 to 4.1, indicating that their magma sources were also mixed by mantle-derived components. LA-ICP-MS zircon U-Pb dating results reveal that the Bayanbulak andesite, the Bayanbulak monzonite and the Ouxidaban quartz diorite were formed at 423, 424Ma, and 421Ma, respectively. The age and geochemical data indicate that both the southern CTB and northern Tarim Craton were active continental margins during the Late Silurian, favoring a bi-directional subduction model for the evolution of the STO during that period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call