Abstract

With the rapid development of commercial flexible/wearable devices, flexible batteries have attracted great attention as optimal power sources. However, a combination of high energy density and excellent arbitrary deformation ability is still a critical challenge to satisfy practical applications. Inspired by rigid and soft features of chemical molecular structures, novel bidirectional flexible snake‐origami lithium‐ion batteries (LIBs) with both high energy density and favorable flexibility are designed and fabricated. The flexible snake‐origami battery consists of rigid and soft segments, where the former is designed as the energy unit and the latter served as the deformation unit. With the unique features from such design, the as‐fabricated battery with calculating all the components exhibits a record‐setting energy density of 357 Wh L−1 (133 Wh kg−1), compared with the cell‐scale flexible LIBs achieved from both academic and industry. Additionally, a design principle is established to verify the validity of utilizing rigid‐soft‐coupled structure for enduring various deformations, and the intrinsic relationship between battery structure, energy density, and flexibility can be confirmed. The results suggest that the design principle and performance of bidirectional flexible snake‐origami batteries will provide a new reliable strategy for achieving high energy flexible batteries for wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.