Abstract

This paper introduces a novel architecture-bidirectional optical neural network (BONN)-for providing backward connections alongside forward connections in artificial neural networks (ANNs). BONN incorporates laser diodes and photodiodes and exploits the properties of Köhler illumination to establish optical channels for backward directions. Thus, it has bidirectional functionality that is crucial for algorithms such as the backpropagation algorithm. BONN has a scaling limit of 96 × 96 for input and output arrays, and a throughput of 8.5 × 1015 MAC/s. While BONN's throughput may rise with additional layers for continuous input, limitations emerge in the backpropagation algorithm, as its throughput does not scale with layer count. The successful BONN-based implementation of the backpropagation algorithm requires the development of a fast spatial light modulator to accommodate frequent data flow changes. A two-mirror-like BONN and its cascaded extension are alternatives for multilayer emulation, and they help save hardware space and increase the parallel throughput for inference. An investigation into the application of the clustering technique to BONN revealed its potential to help overcome scaling limits and to provide full interconnections for backward directions between doubled input and output ports. BONN's bidirectional nature holds promise for enhancing supervised learning in ANNs and increasing hardware compactness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call