Abstract

Wireless Sensor Networks (WSNs) have an assortment of application areas, for instance, civil, military, and video surveillance with restricted power resources and transmission link. To accommodate the massive traffic load in hefty sensor networks is another key issue. Subsequently, there is a necessity to backhaul the sensed information of such networks and prolong the transmission link to access the distinct receivers. Passive Optical Network (PON), a next-generation access technology, comes out as a suitable candidate for the convergence of the sensed data to the core system. The earlier demonstrated work with single-OLT-PON introduces an overloaded buffer akin to video surveillance scenarios. In this paper, to combine the bandwidth potential of PONs with the mobility capability of WSNs, the viability for the convergence of PONs and WSNs incorporating multi-optical line terminals is demonstrated to handle the overloaded OLTs. The existing M/M/1 queue theory with interleaving polling with adaptive cycle time as dynamic bandwidth algorithm is used to shun the probability of packets clash. Further, the proposed multi-sink WSN and multi-OLT PON converged structure is investigated in bidirectional mode analytically and through computer simulations. The observations establish the proposed structure competent to accommodate the colossal data traffic through less time consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call