Abstract
This article presents an evolutionary topology optimization method for compliance minimization of structures under design-dependent pressure loads. In traditional density based topology optimization methods, intermediate values of densities for the solid elements arise along the iterations. Extra boundary parametrization schemes are demanded when these methods are applied to pressure loading problems. An alternative methodology is suggested in this article for handling this type of load. With an extended bi-directional evolutionary structural optimization method associated with a partially coupled fluid–structure formulation, pressure loads are modelled with hydrostatic fluid finite elements. Due to the discrete nature of the method, the problem is solved without any need of pressure load surfaces parametrization. Furthermore, the introduction of a separate fluid domain allows the algorithm to model non-constant pressure fields with Laplace's equation. Three benchmark examples are explored in order to show the achievements of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.