Abstract

The study of nonreciprocal wave propagation is of great interest for both fundamental research and engineering applications. Here we demonstrate theoretically and experimentally a bidirectional, nonreciprocal, and high-quality diode that can rectify elastic waves in both forward and backward directions in an elastic metamaterial designed to exhibit enhanced nonlinearity of resonances. This diode can preserve or vary frequency, rectify low-frequency long wave with small system size, offer high-quality insulation, can be modulated by amplitude, and break reciprocity of both the total energy and fundamental wave. We report three mechanisms to break reciprocity: the amplitude-dependent band gap combining interface reflection, chaotic response combining linear band gap, amplitude-dependent attenuation rate in damping diode. The bidirectional diode paves ways for mutually controlling information and energy transport between two sources, which can be used as wave insulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.