Abstract
Distributed energy resources (DER) are integrated into a microgrid through dc-dc power electronic converters. The bidirectional dc-dc converter regulates charging and discharging operations of ESS. Model predictive control (MPC), is a high-performance control technique for these converters, but it is limited in robustness to parameter mismatch, model uncertainties and sensor measurement noise. Therefore, in this paper, an improved hybrid cascade-parallel extended state observer (CP-ESO) is proposed, for model-free predictive control, to guarantee both robustness to parameter/model uncertainties and measurement noise suppression. A novel structurally-adaptive ESO scheme is also proposed to improve the disturbance rejection of CP-ESO during transient response. These results are supported by analysis and design guidelines for the selection of optimal sub-frequencies. Experimental results, for a bidirectional dc-dc boost converter, validate the effectiveness of the proposed methods against model uncertainties, external disturbances from variable input voltage and load, as well as measurement noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power and Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.