Abstract

Vehicle-to-grid (V2G) technology enables bidirectional charging of electric vehicle (EV) and facilitates power grid ancillary services. However, battery pack in EV may develop in-cell dynamic variations over time. This is due to the structural complexity and electrochemical operations in the battery pack. These variations may arise in V2G systems due to: first, additional charging and discharging cycles to power grid; second, external shocks; and third, long exposures to high temperatures. A particular source of these variations is due to faulty sensors. Therefore, it can be argued that the battery packs in EV are highly reliant on the monitoring of these in-cell variations and their impact of propagation with each involved component. In this article, a prediction-based scheme to monitor the health of variation induced sensors is proposed. First, a propagation model is developed to predict the in-cell variations of a battery pack by calculating the covariance using a median-based expectation. Second, a hypothesis model is developed to detect and isolate each variation. This is obtained by deriving a conditional probability-based density function for the measurements. The proposed monitoring framework is evaluated using experimental measurements collected from Li-ion battery pack in EVs. The in-cell variation profiles have been verified using D-SAT Chroma 8000ATS hardware platform. The performance results of the proposed scheme show accurate analysis of these emerged variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call