Abstract
Single-unit recording experiments were done in chloralose-anesthetized, paralyzed and artificially ventilated cats to identify neurons in ventrolateral medulla (VLM) that send efferent axons directly to the region of the nucleus of the solitary tract (NTS) and receive cardiovascular afferent inputs from the carotid sinus (CSN) and aortic depressor (ADN) nerves and the NTS. Units in VLM were identified by antidromic excitation to stimulation of functionally and histologically verified sites in the NTS complex. Antidromic potentials were recorded from 34 units in VLM. Units responded with a mean antidromic latency of4.37 ± 0.32 ms corresponding to a mean conduction velocity of0.93 ± 0.07m/s. Of these 34 units, 18 were excited orthodromically by stimulation of the CSN and/or ADN. Furthermore, 10 of the 18 units responding to stimulation of the buffer nerves were also orthodromically excited by stimulation of NTS. An additional 76 units were identified in VLM that only responded orthodromically to stimulation of NTS with a mean latency of9.75 ± 2.93ms, of which 33 also responded orthodromically to stimulation of the buffer nerves. These data provide electrophysiological evidence of a bidirectional connection between neurons in VLM that receive and integrate peripheral cardiovascular afferent inputs and send efferent axons directly back to the region of NTS. These results suggest that neurons in the VLM may be part of a medullary feedback reflex loop through which afferent information from cardiovascular receptors exerts an influence on NTS neurons involved in the control of the circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.