Abstract
Let K be the restricted contact Lie algebras K(n, ) over an algebraically closed field F of characteristic p > 3. We prove that each skew-symmetric biderivation of K is inner and show that commuting maps on K are scalar multiplication maps. Moreover, it is showed that the commuting automorphisms and dertivations of K are proved to be the identity mappings and zero mappings, respectively. Meanwhile, the commutative post-Lie algebra structures on K are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.