Abstract
BackgroundBromhexine (BHX) is a mucolytic drug used in treatment the respiratory disorders which are associated with excessive or viscid mucus. Transition metal complexes have made tremendous progress in the treatment of a variety of human ailments, according to reported articles. Transition metal complexes are being developed as medications with a lot of effort. Metal complexes can form a variety of coordination geometries, giving them distinct forms. So, binary metal complexes of bromhexine drug have been prepared to enhance the biological activity and stability of the free drug. MethodsA new series of binary complexes with bromhexine drug (BHX) has been prepared with some transition metal ions namely Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II). Elemental analyses, FT-IR, mass spectrometry, thermal studies and UV-Vis spectra have been used to characterize and structurally elucidate the produced metal complexes. Antibacterial activity has been tested for the ligand and metal complexes against a variety of pathogenic bacterial species (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). In addition, the ligand has been tested for anticancer efficacy against the MCF-7 breast cancer cell line, as opposed to binary metal complexes. The binding orientation or conformation of the free BHX ligand and Co(II) complex in the active region of the protein of crystal structure of Escherichia coli (PDB ID: 3T88) and Pseudomonas aeruginosa (PDB ID: 6NE0) has been performed using molecular docking studies. ResultsThe BHX ligand coupled in neutral bidentate mode to the metal ions, according to FT-IR and 1H-NMR spectral results. The molar conductivity measurements of the complexes in DMF proved the electrolytic nature of all binary complexes. Co(II) complex showed the highest inhibition zone diameter against S. aureus, E. coli and P. aeruginosa. Zn(II) complex had the greatest inhibitory effect against P. aeruginosa and B. subtilis. Also, Cd(II) chelate appeared high efficacy as antibacterial agent against Pseudomonas aeruginosa and Staphylococcus aureus. ConclusionAll the output data conjugated to confirm the octahedral geometry of the metal complexes. The biological findings revealed that metal complexes can be more active than the free BHX ligand. Against MCF-7 cell line, Cd(II)-L complex is highly active complex (4.95 µg/mL) but BHX free drug is the most active compound (3.96 µg/mL).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.