Abstract

The aim of this work is to evaluate the performance of Bidens pilosa extract as a corrosion inhibitor for 1008 carbon steel in a neutral medium of 0.1 M NaCl. The research has been accomplished by weight loss measurements, linear polarization resistance (Rp) monitoring and electrochemical impedance spectroscopy (EIS). Phytochemical analysis and Fourier transform infrared spectroscopy were performed to determine bioactive components and detect the main functional groups of Bidens pilosa extract, respectively. The morpholo­gical characterization of the substrate was carried out by optical microscopy (OM). Different isotherms were evaluated to understand more clearly the adsorption mechanism of the inhibitor extract molecules on the surface of the 1008 carbon steel substrate, and the best fit was obtained for the Langmuir isotherm. The results showed that the corrosion rate decreased with an increase of the concentration of the inhibitor up to 1000 ppm, reaching a maximum efficiency value of 82.9 % from gravimetric tests, and 73.1 % from the fitting of EIS data to an equivalent electric circuit. The calculated thermodynamic parameters suggested the formation of a monolayer of inhibitor molecules on the metal surface. The ΔGoads value (-22.8 kJ mol-1) determined from the Langmuir isotherm model indicated that adsorption of the inhibitor molecules on the substrate surface follows a physisorption mechanism. This research revealed that Bidens pilosa extract can be used as a corrosion inhibitor and emerges as an alternative to replace synthetic corrosion inhibitors that are harmful to health and cause damage to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.