Abstract

Virtual power plant (VPP) coordinates the energy consumption or production of its components and trades power in both day-ahead market (DAM) and balancing market (BM) to maximize operating margins, where consists of intermittent distributed generation, energy storage devices, and flexible demand. Due to the uncertainty of electricity prices and wind power output and imbalance penalties, VPP bidding is risky. Meanwhile, both traditional stochastic optimization (SO) and robust optimization (RO) algorithms have certain limitations and shortcomings in dealing with wind power output uncertainties. Therefore, a two-stage distribution robust optimization (DRO) model is proposed in this paper for determining the optimal bidding strategy for VPP participation in the energy market and combining L1 norm with L∞ norm to simultaneously constrain the confidence set of uncertain probability distributions. The column-and-constraint generation (CCG) algorithm is used to solve it. The robustness and feasibility of the proposed model are verified by a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.