Abstract
Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.