Abstract

This paper investigates some univariate and bivariate constrained interpolation problems using fractal interpolation functions. First, we obtain rational cubic fractal interpolation functions lying above a prescribed straight line. Using a transfinite interpolation via blending functions, we extend the properties of the univariate rational cubic fractal interpolation function to generate surfaces that lie above a plane. In particular, the constrained bivariate interpolation discussed herein includes a method to construct fractal interpolation surfaces that preserve positivity inherent in a prescribed data set. Uniform convergence of the bivariate fractal interpolant to the original function which generates the data is proven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.