Abstract

For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h} \ltimes (k^* \times {\rm Aut}_{\rm Lie} (\mathfrak{h}))$. In the non-perfect case the classification of these Lie algebras is a difficult task. Let $\mathfrak{l} (2n+1, k)$ be the Lie algebra with the bracket $[E_i, G] = E_i$, $[G, F_i] = F_i$, for all $i = 1, \dots, n$. We explicitly describe all Lie algebras containing $\mathfrak{l} (2n+1, k)$ as a subalgebra of codimension $1$ by computing all possible bicrossed products $k \bowtie \mathfrak{l} (2n+1, k)$. They are parameterized by a set of matrices ${\rm M}_n (k)^4 \times k^{2n+2}$ which are explicitly determined. Several matched pair deformations of $\mathfrak{l} (2n+1, k)$ are described in order to compute the factorization index of some extensions of the type $k \subset k \bowtie \mathfrak{l} (2n+1, k)$. We provide an example of such extension having an infinite factorization index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call