Abstract
In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.