Abstract

We consider bi-criteria optimization problems for decision rules and rule systems relative to length and coverage. We study decision tables with many-valued decisions in which each row is associated with a set of decisions as well as single-valued decisions where each row has a single decision. Short rules are more understandable; rules covering more rows are more general. Both of these problems—minimization of length and maximization of coverage of rules are NP-hard. We create dynamic programming algorithms which can find the minimum length and the maximum coverage of rules, and can construct the set of Pareto optimal points for the corresponding bi-criteria optimization problem. This approach is applicable for medium-sized decision tables. However, the considered approach allows us to evaluate the quality of various heuristics for decision rule construction which are applicable for relatively big datasets. We can evaluate these heuristics from the point of view of (i) single-criterion—we can compare the length or coverage of rules constructed by heuristics; and (ii) bi-criteria—we can measure the distance of a point (length, coverage) corresponding to a heuristic from the set of Pareto optimal points. The presented results show that the best heuristics from the point of view of bi-criteria optimization are not always the best ones from the point of view of single-criterion optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.