Abstract

This paper studies the bicriteria problem of non-preemptively scheduling n jobs, each of which is associated with a due date and comprises a standard and a specific component, on a single fabrication machine to minimize makespan and maximum lateness simultaneously. The specific components are processed individually and the standard components are grouped into batches for processing. A setup time is required before each batch of standard components is processed. A standard component is available (i.e., ready for delivery to the next production stage) only when the batch it belongs to is totally completed, whereas a specific component is available on completion of its processing. The completion time of a job is defined as the moment when both its two components have been processed and are available. An O(n2logn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$O(n^2\\log n)$$\\end{document}-time algorithm with linear memory requirements is presented which can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.