Abstract

Let f be a C1 bivariate function with Lipschitz derivatives, and F={x∈R2:f(x)⩾λ} an upper level set of f, with λ∈R. We present a new identity giving the Euler characteristic of F in terms of its three-points indicator functions. A bound on the number of connected components of F in terms of the values of f and its gradient, valid in higher dimensions, is also derived. In dimension 2, if f is a random field, this bound allows to pass the former identity to expectations if f’s partial derivatives have Lipschitz constants with finite moments of sufficiently high order, without requiring bounded conditional densities. This approach provides an expression of the mean Euler characteristic in terms of the field’s third order marginal. Sufficient conditions and explicit formulas are given for Gaussian fields, relaxing the usual C2 Morse hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.