Abstract
BackgroundSingle marker analysis (SMA) with linear mixed models for genome wide association studies has uncovered the contribution of genetic variants to many observed phenotypes. However, SMA has weak false discovery control. In addition, when a few variants have large effect sizes, SMA has low statistical power to detect small and medium effect sizes, leading to low recall of true causal single nucleotide polymorphisms (SNPs).ResultsWe present the Bayesian Iterative Conditional Stochastic Search (BICOSS) method that controls false discovery rate and increases recall of variants with small and medium effect sizes. BICOSS iterates between a screening step and a Bayesian model selection step. A simulation study shows that, when compared to SMA, BICOSS dramatically reduces false discovery rate and allows for smaller effect sizes to be discovered. Finally, two real world applications show the utility and flexibility of BICOSS.ConclusionsWhen compared to widely used SMA, BICOSS provides higher recall of true SNPs while dramatically reducing false discovery rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.