Abstract
The problem of constructing classifiers from multiple annotators who provide inconsistent training labels is important and occurs in many application domains. Many existing methods focus on the understanding and learning of the crowd behaviors. Several probabilistic algorithms consider the construction of classifiers for specific tasks using consensus of multiple labelers annotations. These methods impose a prior on the consensus and develop an expectation-maximization algorithm based on logistic regression loss. We extend the discussion to the hinge loss commonly used by support vector machines. Our formulations form bi-convex programs that construct classifiers and estimate the reliability of each labeler simultaneously. Each labeler is associated with a reliability parameter, which can be a constant, or class-dependent, or varies for different examples. The hinge loss is modified by replacing the true labels by the weighted combination of labelers' labels with reliabilities as weights. Statistical justification is discussed to motivate the use of linear combination of labels. In parallel to the expectation-maximization algorithm for logistic-based methods, efficient alternating algorithms are developed to solve the proposed bi-convex programs. Experimental results on benchmark datasets and three real-world biomedical problems demonstrate that the proposed methods either outperform or are competitive to the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.