Abstract

Ionogels with excellent mechanical performance and conductivity have been considered as ideal candidates for flexible ionotronics. However, current ionogels suffer from the well-known trade-off between mechanical strength and conductivity. Herein, we construct an ionogel with bicontinuous phase structures, a polymer-rich phase, and a solvent-rich phase. The synergy of the polymer-rich phase as an energy dissipation mechanism and the solvent-rich phase as a conductive nanochannel enables the resultant bicontinuous ionogel to show comprehensive properties, a tensile strength of 4.2 MPa, a toughness of 14.4 MJ/m3, a conductivity of 4.3 mS/cm, excellent self-healing capability, and reprocessability. Benefiting from the remarkable mechanical performance and high conductivity, the integrated supercapacitor achieves a high specific capacitance of 118 mF/cm2 (at a current density of 0.2 mA/cm2) and a capacitance retention of up to 90% (1000 charge-discharge cycles). More significantly, the resultant supercapacitor retains outstanding electrochemical performance even after being subjected to various deformations and even under harsh conditions. This study provides a reliable strategy for developing a high-performance ionogel electrolyte and broadens its application in flexible ionotronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.