Abstract
It is considered a significant challenge to construct nanocarriers that have high drug loading capacity and can overcome physiological barriers to deliver efficacious amounts of drugs to solid tumors. Here, the development of a safe, biconcave carbon nanodisk to address this challenge for treating breast cancer is reported. The nanodisk demonstrates fluorescent imaging capability, an exceedingly high loading capacity (947.8 mg g-1 , 94.78 wt%) for doxorubicin (DOX), and pH-responsive drug release. It exhibits a higher uptake rate by tumor cells and greater accumulation in tumors in a mouse model than its carbon nanosphere counterpart. In addition, the nanodisk absorbs and transforms near-infrared (NIR) light to heat, which enables simultaneous NIR-responsive drug release for chemotherapy and generation of thermal energy for tumor cell destruction. Notably, this NIR-activated dual therapy demonstrates a near complete suppression of tumor growth in a mouse model of triple-negative breast cancer when DOX-loaded nanodisks are administered systemically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.