Abstract

Tailoring the architecture of porous two-dimensional networks formed by molecules is essential for developing functional materials with low dimensionality. Here we present bicomponent porous networks with tunable pore-sizes that were formed by self-assembly of hydrogen-bonding molecules at the liquid/graphite interface. Scanning tunneling microscopy investigations demonstrate the formation and coexistence of three polymorphs. It is found that the occurrence of these polymorphs depends critically on the surface coverage. Further on, atomic force microscopy measurements, spectroscopic studies, and dynamic light scattering investigations show the propensity of one of the two molecular components to form aggregates beyond the monolayer. We discuss how these preorganized aggregates in solution may affect the self-assembly at the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.