Abstract

A new BiCMOS current cell and a BiCMOS current switch for high speed, self-calibrating, current-steering D/A converters are described. The BiCMOS current cell can be realized in a BiCMOS process or in a conventional CMOS process using a substrate PNP transistor, while the BiCMOS current switch is intended for implementation in a BiCMOS process. The performance of these circuits has been demonstrated in 0.8 /spl mu/m BiCMOS and 1.2-/spl mu/m CMOS technologies. A detailed noise analysis of the BiCMOS current cell indicates that noise during the calibration phase limits its relative accuracy to about 150 ppm. This is substantiated by measured results which show a relative matching of about 100-150 ppm, which is the equivalent of about 13 b performance. Measurement results also indicate that the absolute accuracy of the BiCMOS current cell is better than 0.5% over the designed current range, which is better than that of previously reported designs. Test results for the BiCMOS current switch indicate that a 10-90% switching time of 0.9 ns has been achieved. Furthermore, the switching time of the new BiCMOS switch is very insensitive to current level and input waveform compared to conventional CMOS switches. A 4-b D/A converter based on these components has been fabricated, and test results have demonstrated that it is functional. This DAC will be used as the internal DAC of a /spl Sigma//spl Delta/ modulator for over-sampled video and digital radio applications. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call