Abstract

Technical analysis with numerous indicators and patterns has been regarded as important evidence for making trading decisions in financial markets. However, it is extremely difficult for investors to find useful trading rules based on numerous technical indicators. This paper innovatively proposes the use of biclustering mining to discover effective technical trading patterns that contain a combination of indicators from historical financial data series. This is the first attempt to use biclustering algorithm on trading data. The mined patterns are regarded as trading rules and can be classified as three trading actions (i.e., the buy, the sell, and no-action signals) with respect to the maximum support. A modified K nearest neighborhood ( K -NN) method is applied to classification of trading days in the testing period. The proposed method [called biclustering algorithm and the K nearest neighbor (BIC- K -NN)] was implemented on four historical datasets and the average performance was compared with the conventional buy-and-hold strategy and three previously reported intelligent trading systems. Experimental results demonstrate that the proposed trading system outperforms its counterparts and will be useful for investment in various financial markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.