Abstract

Dynamic and reversible N6-methyladenosine (m6A) modifications are associated with many essential cellular functions as well as physiological and pathological phenomena. In-depth study of m6A co-functional patterns in epi-transcriptomic data may help to understand its complex regulatory mechanisms. In this chapter, we describe several biclustering mining algorithms for epi-transcriptomic data to discover potential co-functional patterns. The concepts and computational methods discussed in this chapter will be particularly useful for researchers working in related fields. We also aim to introduce new deep learning techniques into the field of co-functional analysis of epi-transcriptomic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.