Abstract

Many anion channels, frequently referred as Cl- channels, are permeable to different anions in addition to Cl-. As the second-most abundant anion in the human body, HCO3- permeation via anion channels has many important physiological roles. In addition to its classical role as an intracellular pH regulator, HCO3- also controls the activity and stability of dissolved proteins in bodily fluids such as saliva, pancreatic juice, intestinal fluid, and airway surface liquid. Moreover, HCO3- permeation through these channels affects membrane potentials that are the driving forces for transmembrane transport of solutes and water in epithelia and affect neuronal excitability in nervous tissue. Consequently, aberrant HCO3- transport via anion channels causes a number of human diseases in respiratory, gastrointestinal, genitourinary, and neuronal systems. Notably, recent studies have shown that the HCO3- permeabilities of several anion channels are not fixed and can be altered by cellular stimuli, findings which may have both physiological and pathophysiological significance. In this review, we summarize recent progress in understanding the molecular mechanisms and the physiological roles of HCO3- permeation through anion channels. We hope that the present discussions can stimulate further research into this very important topic, which will provide the basis for human disorders associated with aberrant HCO3- transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.