Abstract

Learning to program requires diligent practice and creates room for discovery, trial and error, debugging, and concept mapping. Learners must walk this long road themselves, supported by appropriate and timely feedback. Providing such feedback in programming exercises is not a humanly feasible task. Therefore, the early and steadily growing interest of computer science educators in the automated assessment of programming exercises is not surprising. The automated assessment of programming assignments has been an active area of research for over a century, and interest in it continues to grow as it adapts to new developments in computer science and the resulting changes in educational requirements. It is therefore of paramount importance to understand the work that has been performed, who has performed it, its evolution over time, the relationships between publications, its hot topics, and open problems, among others. This paper presents a bibliometric study of the field, with a particular focus on the issue of automatic feedback generation, using literature data from the Web of Science Core Collection. It includes a descriptive analysis using various bibliometric measures and data visualizations on authors, affiliations, citations, and topics. In addition, we performed a complementary analysis focusing only on the subset of publications on the specific topic of automatic feedback generation. The results are highlighted and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.