Abstract

Polyvinylidenedifluoride–hexafluoropropylene, (P(VdF–HFP))-based polymer electrolytes, as separators for lithium batteries, were prepared through different polymer/solvent (N,N-dimethylformamide, DMF) ratios and physicochemically investigated. Scanning electron microscopy measurements have shown a homogeneously distributed porosity within the membranes, with moderately tortuous pathways, resulting in a liquid uptake up to 77 wt.% with respect to the overall weight and conduction values above 10−3 S cm−1 at room temperature.Prolonged cycling tests, performed on Li/Sn–C and Li/LiFePO4 half-cells based on P(VdF–HFP) polymer electrolyte separator membranes, have evidenced nominal capacities ranging from 70% to 90% of the theoretical value with very good capacity retention and charge/discharge efficiency close at 100% even at high current rates. A capacity decay is observed at high current regime, associated to the diffusion phenomena occurring within the electrode and the polymer electrolyte separator membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.