Abstract

Lattice oxygen mechanism (LOM) is a promising pathway to circumvent sluggish oxygen evolution reaction (OER) for efficient water electrolysis. The iron (Fe)-based oxyhydroxide materials for OER catalysts by LOM is well known. However, dissolution of Fe atoms and promoting participation level of lattice oxygen at a practical and extremely high current density (> 1000 mA cm-2 for oxygen generation) should be resolved for high performance and long-term stability. Here, controlling the reduction of synthetic intermediates allowed amorphous BiFe (oxy)hydroxides with secondary bismuth (Bi) metal (BM/BiFeOxHy) heterogeneous structures with abundant lattice vacancies to be obtained. The BM/BiFeOxHy electrode exhibited low overpotential of 232 and 359 mV at a current density of 10 and 1000 mA cm-2, respectively. Moreover, the balanced hybridization of Bi/Fe-O was demonstrated to result in long-term catalytic stability without the dissolution of Fe atoms up to 1000 h at the extremely high current density of 1000 mA cm-2 with negligible degradation. We further showed that the excellent performance of the newly proposed BM/BiFeOxHy electrocatalysts is attributed to the utilization of Fe/Bi-O hybridization, the induced amorphous structure, and increased lattice vacancies, which are systematically demonstrated by the electrochemical and physicochemical analysis and theoretical density functional theory (DFT) calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call