Abstract

Biaxial stretching behavior of a promising high-strength copper-alloyed interstitial-free (IF) steel has been investigated under various processing conditions using bulge tests. Hill theory and von Mises yield criterion have been used to analyze the results. It is revealed that copper-alloyed IF steel in continuous-annealed (CA) condition exhibits the highest equivalent strain at fracture and largest limiting dome height (LDH) among all the processing conditions. However, these values are lower in copper-alloyed interstitial steel than in traditional interstitial-free–high-strength (IF-HS) steels due to the presence of solute copper and copper precipitates in the former.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.