Abstract

The phase behavior of amphiphilic anisometric particles is explored using Monte Carlo simulations. The particles are composed of two incompatible laterally attached units: a spherocylinder and a spheroplatelet. A liquid crystalline phase polymorphism is obtained including biaxial nematic, (quasi long range biaxial) calamitic smectic-A, biaxial lamellar and columnar phases. The simulation results demonstrate intriguing phase transitions such as nematic-nematic, discotic nematic to (quasi long range biaxial) calamitic smectic-A, biaxial nematic to uniaxial calamitic smectic-A, and isotropic or discotic nematic to biaxial lamellar phases that possess nematic ordering within the layers. These findings are rationalized in terms of molecular geometry and amphiphilicity of different molecular units. The molecular model can be used as a tool for the prediction of the complex phase behavior that is relevant to liquid crystalline colloids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.