Abstract

AbstractConventional photovoltaic (PV)‐photodetectors are hard to detect fainted signals, while photomultiplication (PM)‐capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead‐free Cs3Cu2I5 nanocrystals with self‐trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer‐by‐layer heterojunction structure, and corresponding organic photodetectors with bias‐switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 μs, large bandwidth over 0.2 MHz and long‐term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias‐switchable multi‐functional organic optoelectrical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.