Abstract

Quantum field theory suggests that electromagnetic fields naturally fluctuate, and these fluctuations can be harnessed as a source of perfect randomness. Many potential applications of randomness rely on controllable probability distributions. We show that vacuum-level bias fields injected into multistable optical systems enable a controllable source of quantum randomness, and we demonstrated this concept in an optical parametric oscillator (OPO). By injecting bias pulses with less than one photon on average, we controlled the probabilities of the two possible OPO output states. The potential of our approach for sensing sub–photon-level fields was demonstrated by reconstructing the temporal shape of fields below the single-photon level. Our results provide a platform to study quantum dynamics in nonlinear driven-dissipative systems and point toward applications in probabilistic computing and weak field sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.