Abstract
Abstract This paper finds that the maximum simulated likelihood (MSL) estimator produces substantial biases when applied to the bivariate normal distribution. A specification of the random parameter bivariate normal model is considered, in which a direct comparison between the MSL and maximum likelihood (ML) estimators is feasible. The analysis shows that MSL produces biased results for the correlation parameter. This paper also finds that the MSL estimator is biased for the bivariate Poisson-lognormal model, developed by Munkin and Trivedi (1999. “Simulated Maximum Likelihood Estimation of Multivariate Mixed-Poisson Regression Models, with Application.” The Econometrics Journal 2: 29–48). A simulation study is conducted, which shows that MSL leads to serious inferential biases, especially large when variance parameters in the true data generating process are small. The MSL estimator produces biases in the estimated marginal effects, conditional means and probabilities of count outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Econometric Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.