Abstract
Abstract A proof-of-concept systematic evaluation of convective hazards is applied to short-term (1–6 h) forecasts using the Morrison, National Severe Storms Laboratory (NSSL), Predicted Particle Properties (P3), and Thompson two-moment microphysics schemes for the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (HWT SFE) period (hereafter “MORR,” “NSSL,” “P3,” and “THOM” experiments, respectively). Four convective line cases are highlighted to elaborate on relative experiment biases/skill. Composite reflectivity and 1-h accumulated precipitation are examined to determine storm coverage/precipitation biases/skill utilizing point-based verification with a neighborhood. Simulated 1–6-km updraft helicity and observed 3–6-km azimuthal shear and MESH are examined to consider simulated rotation and hail core prediction with object-based scores. Over the full season, MORR displays little overall storm coverage bias relative to NSSL, P3, and THOM underprediction. The equitable threat score (ETS) and fractions skill score (FSS) of P3 are lower than the other experiments. P3 and THOM underpredict convective regions with intense reflectivity relative to MORR and NSSL overprediction. All experiments underpredict precipitation amounts. P3 light precipitation FSS is lower than other experiments. Rotation object verification exhibits sensitivity to microphysics experiments, as microphysics has an indirect influence on storm dynamics. While P3 has the largest hail object underprediction, all experiments grossly overpredict the number of hail objects in convective line cases despite forecast objects defined with the same product (MESH) and threshold as observations. The importance of microphysics ice parameterization and ongoing scheme updates highlight the need to apply this verification framework to optimal/updated schemes before optimizing ensemble design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.