Abstract

The currently emerging large-scale complex networks and networks of networks are becoming apparent in the pervasive supply of seamless and transparent access to heterogeneous resources and services such as network domains, applications, services and storage owned by multiple organizations. The dynamics and heterogeneous environments involved, however, pose many challenges for controlling and balancing resource access, composition and deployment across complex grid and network infrastructures. In this paper, a scheme is proposed that gives a distributed load-balancing scheme by generating almost regular resource allocation networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node refers to its free resources, and the job assignment and resource discovery processes required for load-balancing are accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources in grids and networks. The proposed solution is tested with real world data and the performance is tested against a recently reported distributed algorithm for load balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.